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Turbulent swept flow over a cylindrical wire placed on a wall of a channel is
investigated using direct numerical simulations. This geometry is a model of the flow
through the wire-wrapped fuel pins, the heat exchanger, typical of many nuclear
reactor designs. Mean flow along and across the wire axis is imposed, leading to the
formation of separated flow regions. The Reynolds number based on the bulk velocity
along the wire axis direction and the channel half height is 5400 and four cases are
simulated with different flowrates across the wire. This configuration is topologically
similar to backward-facing steps or slots with swept flow, except that the dominant
flow is along the obstacle axis in the present study and the crossflow is smaller than
the axial flow, i.e. the sweep angle is large. Mean velocities, turbulence statistics, wall
shear stress and instantaneous flow structures are investigated. Particular attention
is devoted to the statistics of the shear stress on the walls of the channel and the
wire in the recirculation zone. The flow around the mean reattachment region, at
the termination of the recirculating bubble, does not exhibit the typical decay of
the mean shear stress observed in classical backward-facing step flows owing to the
presence of a strong axial flow. The evolution of the mean wall shear stress angle
after reattachment indicates that the flow recovers towards equilibrium at a rather
slow rate, which decreases with sweep angle. Finally, the database is analysed to
estimate resolution requirements, in particular around the recirculation zones, for
large-eddy simulations. This has implications in more complete geometrical models
of a wire-wrapped assembly, involving hundreds of fuel pins, where only turbulence
modelling can be afforded computationally.

1. Introduction
Studies of heat transfer in turbulent flows with separation, in particular recirculating

flows, have a long history (Kays & Crawford 2004). Understanding the statistics
of these flows, which influence reattachment length and internal structure of the
recirculation bubble, and the properties of the small-scale turbulence is of fundamental
interest. Separation in turbulent flows can be caused, for example, by geometrical
complexity or an adverse pressure gradient. These flows include flow separation,
shear layers, reattachment and the recovery of non-equilibrium turbulence towards
equilibrium downstream of the reattachment point. Each of these phenomena has a
distinct character and shows a high degree of variability between cases. Still one can
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classify such turbulent flows into two categories, namely, those with separation and
those with turbulence-induced secondary flows. Different features of two- and three-
dimensional turbulent boundary layer separation are reviewed in detail by Simpson
(1996).

In this paper, we investigate the turbulent flow in a channel with a circular wire
placed on one of the walls using direct numerical simulation (DNS). In particular, the
mean flow has velocity components in the axial direction of the wire and perpendicular
to it. This crossflow scenario has not been exhaustively investigated in the past,
although it represents a first-order geometrical simplification of turbulent flows along
complex wire-wrapped assemblies utilized in some nuclear reactors. The purpose of
this configuration is to enhance mass transfer, heat transfer and mixing in several
industrial and chemical processes. In the presence of crossflow, the recirculation
bubble behind the wire is not closed in the mean since axial flow is also present. A
review of DNS as a research tool to simulate turbulent flows is provided by Moin &
Mahesh (1998) and a discussion of applicability of DNS to complex flows is provided
by Karniadakis (1999). Some examples of recent simulations of turbulent flows in
complex geometries include the DNS of turbulent flow in a stationary and serpentine
passage by Laskowski & Durbin (2007), of a round turbulent jet in a laminar crossflow
by Muppidi & Mahesh (2007) and flow through low-pressure turbine cascades by
Rodi (2006).

The canonical flows exhibiting recirculation features include flow over a backward-
facing step, forward-facing step, surface-mounted rib, bump on a surface, half cylinder
and channel with a constriction. A frequently studied flow is the backward-facing
step flow where a separation bubble exists owing to an abrupt geometry change.
Backward-facing step flow has been studied in great detail in the past due to its
geometrical simplicity (Bradshaw & Wong 1972; Eaton & Johnston 1981). A key
feature of this flow is the slow boundary layer recovery after reattachment and an
important characteristic is the reattachment length of the primary separation bubble
(Bradshaw & Wong 1972; Eaton & Johnston 1981; Simpson 1996). For a given
step size the reattachment length increases in the laminar regime as the Reynolds
number is increased. It decreases in the transitional regime when Reynolds number
is increased and then remains nearly Reynolds number independent in the turbulent
regime (Armaly et al. 1983). Numerous studies of this flow have been reported (e.g.
Adams & Johnston 1988; Shih & Ho 1994; Le, Moin & Kim 1997; Kaiktsis &
Monkewitz 2003; Dejoan & Leschziner 2004; Sheu & Rani 2006; Rani, Sheu &
Tsai 2007). Flow over forward-facing step has also received considerable attention
(Farabee & Casarella 1986; Wilhelm, Härtel & Kleiser 2003; Camussi et al. 2008).
This flow develops two recirculating regions, one upstream of the step and another
downstream of the step. This flow also shows slow recovery of the boundary layer
after reattachment.

More complex flows include turbulent flow past a surface mounted two-dimensional
rib (Acharya et al. 1994; Hwang, Chow & Peng 1999; Liua, Ke & Sung 2008) and over
curved walls (Wu & Squires 1998; Marquillie & Ehrenstein 2003; Mittal, Simmons &
Najjar 2003; Gallaire, Marquillie & Ehrenstein 2007; Griffith et al. 2007). Marquillie,
Laval & Dolganov (2008) performed a DNS study of channel flow with one smooth
curved surface and found that the separated regime is characterized by disappearance
of the low-speed streaks, which reappear further downstream after reattachment. The
beginning of the separation bubble is characterized by low levels of turbulence kinetic
energy compared to the downstream part of the bubble where small vortices interact
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with large structures convecting into the boundary layer. In other studies, recirculation
regions are produced by enforcing adverse pressure gradients. These flows are devoid
of curvature effects and isolate phenomena associated with the separation of the flow
(Wood & Bradshaw 1982; Kiya & Sasaki 1985; Dianat & Castro 1991; Honkan &
Andreopoulos 1997; Spalart & Coleman 1997; Na & Moin 1998; Spalart & Strelets
2000; Caruelle & Ducros 2003; Angele & Muhammad-Klingmann 2006; Deck &
Thorigny 2007; Sadeque, Rajaratnam & Loewen 2008). The common theme that has
emerged in the study of these flows is that curvature, adverse or favourable pressure
gradients and impingement of the shear layers on the walls affect in an important
manner the overall flow dynamics and mean turbulence quantities. All these effects
are present in the flow considered in this study in addition to the effect associated
with the presence of a crossflow component.

Fewer studies have concentrated on separation bubbles with a crossflow component.
In this case, the separation bubble is not closed because of the simultaneous presence
of streamwise and spanwise mean flow component. Similar to many turbulent flows,
the linear relationships between the Reynolds stresses and the strain rate tensor do not
hold away from the wall in swept turbulent boundary layer flows over forward-facing
steps (Johnston 1970; Bradshaw 1987; Webster, DeGraaff & Eaton 1996). Weber &
Danberg (1992) performed experimental measurements of the mean velocity in flow
over a swept backward-facing step and found that the boundary layer thickness
increases with an increase in the sweep angle. Kaltenbach & Janke (2000) performed
DNS of flow separation behind a swept rearward-facing step by varying the sweep
angle between 0◦ and 60◦ and found that the reattachment length is reduced up
to 50 % for high sweep angles. Kaltenbach (2003) performed a DNS of the flow
behind a swept backward-facing step to study the effect of skewing on the turbulence
properties and found that strain-induced stretching, compression and skewing of the
mean flow influences the turbulence properties only in the vicinity of separation. In
these studies, the sweep angle was varied from 0◦ to 60◦.

Unfortunately, little is known about flows with large sweep angles, which could
be considered on their own right more appropriately as turbulent crossflows. This is
the main objective of the present study, where the bulk crossflow velocity is varied
between 0 % and approximately 32 %, of the bulk axial velocity, or between 72◦

and 90◦ in terms of the sweep angle. The crossflow angle is defined as the angle
formed by the net bulk velocity with the axial direction and the sweep angle is
defined as the angle formed by the net bulk velocity with the crossflow direction.
One noticeable difference between these flows and other backward-facing step flows
is that the flow within the recirculation region is always fully turbulent, owing to the
presence of a large axial flow. The objective of the present study is to understand
the nature of the mean flow, obtain turbulence statistics, analyse the shear stress
distribution and instantaneous flow structures around the region of recirculation
and to derive quantitative estimates of the grid resolution requirements in coarser
numerical-modelling representations. Real wire-wrapped assemblies are too complex
to be accessible using DNS. They usually consist of hundreds of nuclear fuel pins
with associated wires wrapped helically around them. The configuration studied
here corresponds to an average situation in the real assembly. Moreover, given the
complexity of this geometry, the engineering design and optimization of the assembly
is forced to employ modelling, e.g. large-eddy simulation (LES) or Reynolds averaged
Navier–Stokes (RANS), where the present results can be valuable for comparisons
and validation.
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Figure 1. Schematic of the geometry considered in the present study.

2. Flow description
The problem considered in this study corresponds to a channel with a wire placed

on the bottom wall of the channel. A schematic of the problem is shown in the
figure 1. The domain size is Lx × Ly × Lz = 4πh × 2h × 8πh in the x, y and z directions,
respectively. The x coordinate denotes the crossflow direction, y is the vertical direction
and z is the streamwise or axial direction. The streamwise and crossflow directions
are considered to be periodic. For convenience, the centre of the cylindrical wire of
radius R = 0.5h is placed at the boundary of the periodic domain. Previous studies
of flows in periodic channels with hills by Mellen, Fröhlich & Rodi (2000), Fröhlich
et al. (2005) and Peller & Manhart (2006) suggest that good streamwise decorrelation
and complete flow reattachment is observed using streamwise periodic boundary
conditions if Lx � πho, where ho denotes the hill (obstacle) height. Therefore, in the
present study, the crossflow length of the domain was chosen as Lx = 4πh.

In practical wire-wrapped assemblies, the wire is wrapped under tension around a
nuclear fuel pin and there is a slight deformation of the wire at the contact location.
To approximately model this detail we have chosen to impose a finite contact angle
between the wire and the wall. Therefore, the contact half-angle of the wire with
the bottom wall of the channel is γ =7.5◦ (see right-bottom inset in figure 1). The
flow in the channel is driven by the pressure gradient resulting from the imposed
constant flowrates along the axial and crossflow directions. In this study, the flowrate
specified in the axial direction is higher than that imposed in the crossflow direction.
The resulting crossflow over the wire produces a large recirculation region or bubble
with mean axial flow, in the lee side of the wire. The crossflow detaches from the top
surface of the wire, a shear layer is formed over the recirculation zone, and the flow
then finally reattaches some distance downwind from the wire.

3. Mathematical formulation, approach and parameters
3.1. Governing equations and numerical method

The motion of an incompressible fluid with constant density ρ, and viscosity μ is
governed by the Navier–Stokes equations,

ρ

(
∂u
∂t

+ N(u)

)
= −∇p + μ∇2u, (3.1)
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and the continuity equation

∇ · u = 0, (3.2)

in the computational domain Ω , where u ≡ (u, v, w) represents the velocity field and
p is the pressure. The term N(u) represents the nonlinear advection term, given by

N(u) =
1

2
[(u · ∇)u + ∇ · (uu)]. (3.3)

This particular skew-symmetric form of N(u) has been shown by Zang (1991) to be
more robust compared to other forms that are equivalent in the continuous case,
e.g. convective and rotational forms, when the governing equations are discretized.
In particular, this form minimizes aliasing errors of the spatial discretization used in
this study. Periodic boundary conditions are employed along the axial and crossflow
directions and the no-slip boundary condition is used at the walls and at the surface
of the wire. The mean flow, with axial and crossflow components, is maintained by a
constant pressure-gradient forcing imposed along these directions.

Time dependent simulations based on the above set of equations are carried
out using a spectral element method implemented in Prism (Henderson 1994).
The equations are discretized using two-dimensional spectral elements in the x–y

plane and Fourier modes in the axial direction. In the spectral element method,
the domain Ω is subdivided into K macro elements. Within each of these elements
the geometry and the solution variables are represented by using Nth-order tensor-
product polynomial expansions as basis functions. These basis functions are Gauss–
Lobatto–Legendre (GLL) polynomial interpolants. A third-order accurate time-
splitting scheme developed in Karniadakis, Israeli & Orszag (1991) is used to integrate
the above set of equations. The splitting scheme leads to a set of equations comprising
of an advection equation, and a sequence of elliptic Helmholtz equations enforcing the
incompressibility constraint and the linear viscous term present in the semi-implicit
time integration. The advection terms are treated explicitly in this approach while the
system of implicit elliptic Helmholtz equations are solved by a direct method using
static condensation. Henderson & Karniadakis (1995) provides more details of the
method and the solution strategy.

3.2. Simulation parameters

All statistical quantities in the flow studied here depend on the x and y coordinates.
The z- and time-averaged mean of a flow quantity φ(x, y, z, t) is denoted by 〈φ〉 and
is defined as follows,

〈φ〉(x, y) =
1

N

N∑
i = 1

(
1

Lz

∫ Lz

0

φ(x, y, z, ti) dz

)
, (3.4)

where Lz is the length of the domain in the homogeneous axial direction, i denotes a
time index and N is the total number of instants used to compute the time average.
These running averages are determined only after the simulations reach a statistically
steady state, as discussed below. The flowrates are defined in the customary manner,
according to

Qz =

∫∫
S

W (x, y) dx dy, (3.5)

where S denotes the x–y cross-section of the domain and

Qx = Lz

∫
U (x, y) dy, (3.6)
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Figure 2. Wall shear stress coordinate system. Thick solid lines denote components of wall
shear stress on l-, s- and m-axis, respectively.

with 〈u〉 =U and 〈w〉 = W denoting the average crossflow and streamwise velocity
component, respectively. Note that (3.6) is independent of x when the flow is
statistically stationary, according to the continuity equation (3.2). In the present
problem, mean flow occurs in both axial as well as crossflow directions. This is similar
to three-dimensional turbulent boundary layers with crossflow inhomogeneity. This
leads to the presence of a net mean flow direction which can be defined in terms of
wall shear stress components (Simpson 1996). The components of the shear stress
tensor τ are defined by

τij =μ

(
∂ui

∂xj

+
∂uj

∂xi

)
. (3.7)

The traction Ti on the wall surface is given by

Ti = τijnj , (3.8)

where n = {nj } represents the normal to the wall surface. The traction can then be
projected along a new right-handed coordinate system with direction vectors m, n
and l . On the walls of the channel, m, n and l are aligned with the x-, y- and
z-axis, respectively. On the surface of the wire, l is aligned with the z-axis, m is
aligned with the azimuthal direction and n is aligned with the radial direction. The
corresponding components of traction or wall shear stresses in the streamwise and
crossflow directions, τln and τmn respectively, are given by

τln = Tili, (3.9)

τmn = Timi. (3.10)

The angle formed between the mean streamwise and crossflow wall shear stresses is
defined as the local net flow direction, given by

θ = tan−1

(
〈τmn〉
〈τln〉

)
, (3.11)

where 〈τmn〉 and 〈τln〉 denote the mean wall shear stresses. A new orthogonal
coordinate system (s–q–n) can be obtained by rotating the (l–m–n) system about the
n-axis (Simpson 1996). The sketch of the coordinate systems is shown in figure 2. The
new s coordinate is along the direction defined by θ , while q is oriented perpendicular
to n and s. Under some circumstances, it is possible that a semi-log composite
relationship may exist for the mean velocity profile along this direction. Simpson
(1996) has shown that the wall shear stress vector is also aligned closely with the
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wall-parallel turbulent shear stress vector close to the wall; not generally aligned
with the strain rate vector (Johnston 1970; Bradshaw 1987; Webster et al. 1996), an
assumption built into linear eddy-viscosity models. The net mean flow along direction
s in the new system is given by

Vs = 〈w〉 cos θ + 〈u〉 sin θ. (3.12)

The flow is characterized by employing the bulk axial velocity, Wb =Qz/S, and the
channel half height h as the characteristic velocity and length scales, respectively.
These characteristic scales are used to define the Reynolds number in the axial
direction, given by

Rez =
ρWbh

μ
. (3.13)

The Reynolds number in the crossflow direction is defined by

Rex =
ρUbh

μ
, (3.14)

where Ub =Qx/(2hLz) is the bulk velocity in the crossflow direction. The crossflow
angle θc is defined as

θc = tan−1

(
Ub

Wb

)
, (3.15)

and the sweep angle θw is defined as

θw = tan−1

(
Wb

Ub

)
. (3.16)

The bulk Reynolds number is defined as

Reb =
√

Re2
x + Re2

z , (3.17)

and the friction Reynolds number is given by

Reτ =
ρuτh

μ
, (3.18)

where

uτ =

√
τw

ρ
, (3.19)

is the friction velocity and τw is the overall average shear stress at all the walls
(see (3.21)). Owing to the presence of the wire and its induced secondary flows, a local
average wall shear stress can be defined along direction s, similar to Simpson (1996)
and Kaltenbach (2003), given by

τw = 〈τln〉 cos θ + 〈τmn〉 sin θ. (3.20)

This is also the maximum average shear stress on the wall at any particular location.
The overall average shear stress used in (3.19) is given by

τw =
1

Stop + Sbot

(∫∫
Stop

τw dS +

∫∫
Sbot

τw dS

)
, (3.21)

where Sbot and Stop denote the surface of the bottom wall including the wire and the top
wall, respectively. In most figures, the wall-shear stress is non-dimensionalized using
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Case Rez Rex Reb Reτ Qz Qx

A 5400 0 5400 305 21.94 0
B 5400 417 5416 307 21.94 3.49
C 5400 842 5465 312 21.94 7.05
D 5400 1709 5664 335 21.94 14.32

Table 1. Simulation parameters for all cases.

a characteristic shear stress based on the viscous scaling, τc = μWb/h. Alternatively,
the non-dimensionalization of the wall-shear stress can use an inertial scaling, which
leads to the definition of the skin-friction coefficient Cf , given by

Cf =
τw

1
2
ρW 2

b

. (3.22)

The results for the wall-shear stress τw in this study are non-dimensionalized by τc.
However, the value of Cf can be obtained using the following relation,

Cf =
2

Rez

(
τw

τc

)
. (3.23)

Four simulations, labelled A through D, are investigated in this study with identical
flowrate in the axial direction and varying flowrates in the crossflow direction. The
first simulation, Case A, has no crossflow over the wire and is considered as a reference
scenario to compare with the other cases with crossflow, where recirculation bubbles
are present. The crossflow rate is increased, from cases B to D, to investigate the
effect of the wire and the amount of crossflow on the overall flow behaviour. Table 1
lists some of the parameters of these simulations, including all the Reynolds numbers
defined above. Case A has no crossflow whereas the other cases have increasing
amounts of crossflow. The initial flow field of Case A is generated by imposing
harmonic perturbations of 20 % intensity over a parabolic velocity profile of the
specified flowrate. The flow evolves until a fully developed and statistically stationary
turbulent state is reached. This is verified by monitoring that the first- and second-
order statistics as well as the wall-averaged shear stress ceases to change with time.
The fully developed flow for Case A is then used as the initial condition for Case
B. The initial flow field of Case B evolves again through a transient period until it
reaches a statistical stationary state. Proceeding in similar fashion, the initial flow
fields for cases C and D are obtained from the fully developed flow fields of cases
B and C, respectively. Turbulence statistics were gathered after the initial transients
had subsided. The statistics for Case A, the slowest case to converge, are gathered for
approximately 15 mean flow through times. The time intervals for the other cases were
slightly shorter. The flow through time is based on the bulk axial velocity, Wb, and the
extent of the channel in the axial direction, Lz. The case with the largest crossflow,
D, shows faster approach towards statistical convergence compared to other cases.

3.3. Computational grid

The computational mesh comprises of macro spectral elements where each element
is resolved by a high-order polynomial basis function. The mesh conforms to the
boundary shape to enhance accuracy and improve convergence. The macro spectral
elements were created using an elliptic grid generation technique (implemented in
MATLAB using an unstructured triangular mesh). The elements at the corners



DNS of turbulent swept flow over a wire in a channel 173

Figure 3. Macro spectral elements in the x–y plane.
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Figure 4. Profiles of η normalized by 
yavg for cases B (a) and D (b) at different crossflow
locations. Thin solid, thick dashed, thick solid and thin dashed-dotted curves denote the top
of the wire, centre of primary separated bubble, mean reattachment location and centre of the
channel, respectively.

regions, where the wire contacts the wall, were modified manually to improve their
quality. The resulting final mesh is shown in figure 3. After a few trials, a mesh
containing a total of 936 macro elements in the x–y plane was selected. Each of these
elements are further resolved by a 15th-order GLL polynomial. A total of 512 Fourier
modes are used in the homogeneous z direction, resulting in an overall 107 827 200
collocation points. This mesh was found to be sufficiently accurate to resolve all
the scales of the flows considered in this study. This was verified by determining
the inner-scaled mesh spacing using the axial flow velocity, which is constant in all
simulations. A non-uniform wall-normal spacing of the elements is used to ensure
higher density of mesh points close to the walls. The first mesh point away from the
wall is located at y+ ≈ 0.13 and maximum spacing at the centreline of the channel
is 4.3 wall units. At all the locations on the channel wall and the wire surface there
are 15 or more collocation points below y+ =10. A non-uniform spacing is also used
in the x direction with a minimum grid spacing of 
x+ ≈ 2 close to the wire and a
maximum grid spacing of 
x+ ≈ 6 in the centre of the domain. Apart from the inner-
scaled mesh spacing, the Kolmogorov length scale, η = (ν3/ε)1/4 (where ν = μ/ρ and ε

denote the turbulence dissipation), is extracted from the simulations. The profiles of
η normalized by 
yavg =1/2(
ymin + 
ymax) for cases B and D are shown in figure 4
at four different representative crossflow locations. These crossflow locations will be
discussed later in § 5. A resolved simulation usually requires at least

κmaxη � 1, then
η


yavg

�
1

π
, (3.24)

where κmax denotes the highest resolved wavenumber (Pope 2000). Figure 4 shows that
the above requirement is satisfied at all considered crossflow locations, which indicates
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that the grid resolution is sufficient. In particular, since Case D appears adequately
resolved and since the dissipative length scale is proportional to the inverse of the
Reynolds number, the other lower Reynolds number cases (A, B and C) are likely
also well resolved.

4. Instantaneous flow structures
A recirculation bubble is characterized by the presence of a shear layer roll up

near the separation zone and three-dimensional structures near its reattachment point
(Eaton & Johnston 1981; Chun & Sung 2003). An increase in shear-layer entrainment
is associated with a decrease in the reattachment length owing to a balance between
pressure-driven backflow and re-entrainment by the separated shear layer (Adams &
Johnston 1988). It has been observed in backward-facing step flows that turbulence
is far from equilibrium near the reattachment zone owing to impingement of vortical
structures, emanating from the shear layer, on the wall (Song & Eaton 2004). Thus,
instantaneous flow structures reveal physical aspects of the flow, e.g. separation,
reattachment and recovery, and they are used commonly to analyse flows.

The λ2-vortex criterion of Jeong & Hussain (1995) is adopted here in order to
investigate some of the instantaneous small-scale structures observed in the flow.
This criterion identifies a vortex core defined as a region having net vorticity and
simultaneously excluding regions of potential flow. Using this criterion, vortical
structures present in the near-wall regions for cases A and C are obtained and
are shown in figures 5 and 6, respectively. The structures observed in cases B and D
are qualitatively similar to those shown in Case C below and, therefore, they are not
shown.

The instantaneous flow visualization in figure 5, shows elongated quasi-streamwise
vortices around the near-wall regions, at both the flat channel walls and the wire
surface. These streamwise vortices in the near-wall region are similar to those observed
in the wall region of turbulent boundary layers (Rajagopalan & Antonia 1993). The
streamwise extent of these vortices is approximately 200–300 wall units. These quasi-
streamwise vortices appear to be overlapping in the streamwise direction as a result
of their mutual interaction. These overlapping vortices form chain-like regions as seen
in the encircled regions in figure 5. The streamwise extent of these chain-like regions
is about 800–900 wall units. These structures tend to have positive and negative tilt,
with respect to the axial direction, and are inclined at small angles with respect to the
vertical direction. The present observations are consistent with previous visualizations
in turbulent channel flows (Jeong et al. 1997).

Figure 6 shows the vortical structures for Case C in the near-wall region and the
recirculation zone. Away from the recirculation zone, where the flow is attached, quasi-
streamwise vortices are observed which have similar features as the streamwise vortices
in turbulent channel flows, boundary layers and Case A. The streamwise extent of
these vortices is approximately 130–300 wall units. Additionally, the complete flow
separation from the top of the wire produces a shear layer with intense vortical
structures having no preferential orientation. Near the reattachment zone the worm-
like vortices get distorted due to mean flow straining (Song & Eaton 2004). This is
followed by recovery towards the boundary layer behaviour, with vortical structures
oriented along the quasi-streamwise direction (Le et al. 1997; Lee & Sung 2002).
Similar to Kaltenbach (2003), downstream of the reattachment zone, densely packed
structures exist consisting of entangled filaments with a preferential orientation aligned
with the mean flow. Streamwise vortices with a maximum streamwise extent of about
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Figure 5. Vortical structures in the near-wall region for Case A identified by W 2
b λ2/h2 = −4.

The encircled region contains representative chain-like regions.

400 wall units are also present near the wire top surface. These structures loose their
streamwise orientation once the flow detaches to form the shear layer.

The vorticity vector is closely associated with the orientation of the vortical
structures (e.g. Honkan & Andreopoulos 1997). Figure 7 shows the effect of crossflow
on the orientation of these vortical structures by inspecting the iso-surfaces of axial
vorticity ωz normalized by Wb/h, in the near-wall region and in the shear-layer region
for cases C and D. Structures with negative axial vorticity, in the near-wall region
have a negative tilt with respect to the axial direction for both cases. This is similar
to the behaviour observed in turbulent channel flows by Jeong et al. (1997), where a
one-to-one correspondence was observed between negative vorticity having negative
tilt and positive vorticity having a positive tilt with the streamwise direction in the
near-wall region. The iso-surface of positive axial vorticity (not shown here) shows
a positive tilt with respect to the mean flow direction. However, the vorticity does
not show a specific orientation in the shear-layer region. This is a characteristic that
is often encountered in free-shear flows. As the amount of crossflow is increased
the overall magnitude of the vorticity increases in both the near-wall region as well
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Figure 6. Vortical structures in the near-wall and recirculation regions for Case C identified
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as in the shear-layer region. Qualitatively, the orientation of the structures in the
shear-layer and near-wall regions appear similar.

5. Turbulence statistics
Mean velocity profiles are investigated first, both in the original coordinates and in

the inner-scaled shear stress coordinate frame. This is followed by a discussion of the
behaviour of turbulence intensities at particular planes across the flow.

5.1. Mean flow analysis

Iso-contours of the mean axial velocity W , normalized by Wb, are shown in figure 8
for all cases. In Case A, without crossflow, the velocity in the centre of the channel is
similar to that of a turbulent channel flow. As expected, symmetry is observed about
the mid-plane because of the inherent symmetry of the boundary conditions. The
effect of the wire is felt up to approximately two wire diameters measured from the
side boundaries of the computational domain. In this region, there is a decrease in
the vertical velocity gradient near the walls. In the cases with crossflow, a region of
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detached flow forming a recirculation bubble adjacent to the wire is observed. This
detached-flow zone is created by the imposed crossflow.

Qualitatively, the flow can be classified into four general regions, namely: the
recirculation bubbles, the shear layer, the attached flow region in the centre of the
channel and the acceleration region in the windward side of the wire. Iso-contours
of the mean crossflow velocity U , normalized by Wb, and a projection of the mean
streamlines in the x–y plane are shown in figure 9. Results for Case A are not
shown because U is very small in this simulation and there is no recirculation zone.
In all other cases, the flow separates near the top of the wire and forms two clear
recirculation bubbles in the leeward side of the wire. These bubbles will be referred
as the primary and the secondary bubbles from here onwards. The primary bubble is
larger than the secondary bubble, as their naming implies. The size of both bubbles
increases with increasing crossflow velocity. High-velocity gradients occur at the top
of the wire and a shear layer is formed. After reattachment, the flow recovers towards
the centre of the channel. When the flow reaches the windward side of the wire, it
starts accelerating owing to the reduction in cross-sectional area. The rapid geometric
constriction also causes the flow to separate leading to the formation of another
recirculation bubble close to the wire. The size of this bubble remains similar in all
the cases with crossflow.
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In the present simulations for the particular geometry under consideration and the
chosen flow parameters the adverse pressure gradient downstream of the wire on the
top wall is too small for the flow to separate from the top wall. It is observed in
figure 9 that the streamlines near the upper wall are deflected away from the wall but
the pressure gradient is insufficient to induce flow separation. For example, separation
from the top wall was observed in previous studies with flow over backward-facing
steps (Armaly et al. 1983; Shih & Ho 1994) and on the wall facing a constriction in
a channel (Mittal et al. 2003).

A three-dimensional rendering of selected mean flow streamlines for Case C is
shown in figure 10. Since the flow is periodic in the z direction, it is possible to
chose an arbitrarily large streamwise domain length for the purpose of plotting
mean streamlines. The extent of the domain in figure 10 is 1.25Lz, so that the spiral
nature of the streamlines inside the separated bubble is apparent. The figure shows
six streamlines in the vicinity of the wire where the recirculation zone is observed.
The streamlines s1 and s2 emanate from regions above the primary bubble. These
streamlines skip the bubble region and travel towards the attached flow region.
The streamlines s3, s4, s5 and s6 are located within the primary bubble region. The
rotational character of the flow is observed in these streamlines, where the spiralling
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behaviour is indicative of the interaction of the crossflow with the axial flow within
the recirculation bubble. In the attached zone, the spiral nature is not observed as
the velocity vector in the x–y plane does not reverse direction. This type of spiral
or helical path has been observed previously, for example, by Kaltenbach & Janke
(2000) in a study of flow behind a swept rearward-facing step and by Sheu & Rani
(2006) in flow over a backward-facing step with sidewalls.

Velocity profiles in terms of friction-based, inner, coordinates along the vertical
direction y at different crossflow locations are investigated next. The profiles are
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Spanwise locations

Case xt/h xc/h xb/h xr/h

A 0 2π – –
B 0 2π 1.39 3.32
C 0 2π 2.01 4.67
D 0 2π 2.46 5.55

Table 2. Particular locations of interest along the crossflow direction.
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Figure 11. Variation of reattachment length with crossflow Reynolds number.

extracted at the locations denoted by xt , xc, xb and xr , corresponding to the top of
the wire, centre of the channel, centre of primary recirculation zone and reattachment
point, respectively. The reattachment location xr is defined as the crossflow location
where the shear stress 〈τmn〉 changes sign. This is also the location of the mean dividing
streamline based on mean crossflow and vertical velocity. Only the locations xt and
xc are considered for Case A, since it has no recirculation zone. The locations where
the profiles were extracted are summarized in table 2. Both xb and xr increase with
increasing crossflow in the present simulations. The variation of the non-dimensional
reattachment length, xr/h, is shown in figure 11 in terms of crossflow Reynolds
number Rex . The reattachment length increases with Rex , similar to backward-facing
step flow (Armaly et al. 1983).

Profiles of the mean velocity component Vs (in the wall shear-stress frame)
normalized by the friction velocity, V +

s = Vs/uτ , plotted against the vertical direction
in the inner coordinate y+ = yuτ/ν are provided in figure 12. The profiles have been
extracted at each of the locations indicated previously for both, the bottom and top
walls. The values of the friction velocity uτ normalized by the bulk axial velocity Wb

at the bottom and top walls at different crossflow locations are shown in table 3 for
all the cases. In figure 12 the viscous sublayer relationship, u+ = y+ and the ‘Law of
the Wall’ for a zero pressure gradient (ZPG) boundary layer, u+ = (1/0.4) ln y+ +5.5,
are included. In the present study, the complexity of the flow is such that we did not
attempt to incorporate pressure-gradient effects into a reference ‘Law of the Wall’
valid at each location (Nickels 2004), primarily because it is not a priori expected
that equilibrium will be reached within the turbulent flow as it travels over the wire
surface for such a law to be generally applicable here. The ZPG ‘Law of the Wall’
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Spanwise locations

Case Flow quantity xt/h xc/h xb/h xr/h

A
uτb

/Wb 0.058 0.061 – –
uτt

/Wb 0.054 0.061 – –

B
uτb

/Wb 0.057 0.061 0.057 0.062
uτt

/Wb 0.064 0.058 0.063 0.058

C
uτb

/Wb 0.052 0.063 0.060 0.064
uτt

/Wb 0.065 0.058 0.064 0.060

D
uτb

/Wb 0.051 0.069 0.067 0.070
uτt

/Wb 0.079 0.064 0.064 0.065

Table 3. Friction velocity normalized by Wb at different crossflow locations. Subscripts b and
t denote values at bottom and top wall, respectively.

was considered solely as a means to establish a reference in the discussion of the
profiles. The main interest of the following discussion is to investigate whether the
inner-scaled velocity obeys a ‘Law of the Wall’, i.e. Vs/uτ = F (y+), and in the cases
where it does, up to what distance above the wall is this approximation appropriate.
This is motivated by practical needs to develop wall closure models in complex flows,
e.g. wall-shear-stress models (Schumann 1975).

Figures 12(a) and 12(b) show the velocity profiles at location xc, centre of the
channel, from the bottom and top walls, respectively. All profiles, except at the highest
crossflow rate, show good agreement with the ZPG law. The observed increasing
deviations with increasing crossflow rate are caused by the growth of the main
recirculation bubble. The reattachment point of the recirculation bubble moves closer
to xc as the crossflow rate increases, implying increasing non-equilibrium effects and
more large scale vortices (Eaton & Johnston 1981; Simpson 1996; Le et al. 1997;
Na & Moin 1998; Spalart & Strelets 2000; Liua et al. 2008). Figures 12(c) and 12(d )
show the profiles at location xt , top of the wire, measured from the bottom and
top walls, respectively. For the cases with crossflow, the bottom wall velocity profiles
deviate from the logarithmic law and exhibit higher log-region velocities but remain
remarkably parallel to the logarithmic law; most of the deviation is therefore with
respect to the slope intercept value. This is likely caused by the strong streamline
curvature effects induced by the wire and favourable pressure gradient (FPG) present
on the windward side (Webster et al. 1996). The profiles for all cases but Case D
measured from the top wall follow the law of the wall. The profile for Case D shows
a lower slope than the law of the wall in the log-layer region. This behaviour can
not be modelled only by adjusting the slope intercept value since the von Kármán
constant appears to change; provided a logarithmic law is assumed. Figures 12(e) and
12(f ) show the profiles at location xb, the centre of the main recirculation bubble,
measured from the bottom and top walls, respectively. The profiles from the bottom
wall deviates from the ZPG law. In particular, the bottom wall profiles of the cases
with crossflow are not parallel to the law of the wall reference. The top wall profiles
for all, but Case D, collapse approximately on the reference profile. The top wall
profile for Case D overshoots the reference profile by a large amount, indicating
that the flow is subjected to substantial FPG. In previous studies of backward-facing
steps and similar flows, the velocity profile in the separation bubble does not exhibit
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a logarithmic range owing to adverse pressure gradients (APG) (Dianat & Castro
1991; Kiel & Vieth 1995; Simpson 1996; Le et al. 1997; Na & Moin 1998; Spalart &
Strelets 2000; Angele & Muhammad-Klingmann 2006). In the present case, there
is an imposed axial flow, large sweep angle, and there is dominant turbulent wall-
bounded flow in the z direction. Only in Case D, with the highest crossflow and
lowest sweep angle, an approximate equilibrium turbulence scaling is not observed
in the top-wall profile. Finally, figures 12(g) and 12(h) show the profiles at location
xr , where the flow reattaches, measured from the bottom and top walls, respectively.
The profiles for Case B collapse with the ZPG profile. The profiles of cases C and
D slightly deviate from the law of the wall. Near the reattachment zone, the flow is
expected to be far from equilibrium, owing to the presence of large-scale coherent
structures (Kiya & Sasaki 1985) and impingement of vortical structures on the wall
(Shih & Ho 1994; Simpson 1996; Na & Moin 1998; Kaltenbach 2003; Dejoan &
Leschziner 2004; Hudy, Naguib & Humphreys 2007), but only minor deviations with
respect to the ZPG profile are observed. It appears that anisotropy introduced by the
shear layer impingement is reduced by the strong turbulence maintained in the axial
direction. Finally, the top wall profile for Case B follows the log law while slightly
lower velocities are observed in the log-layer for cases C and D, which is indicative
of an APG.

The mean pressure gradient along the net flow direction, as defined by the shear-
stress coordinate system, is given by

∂〈p〉
∂s

= ∇〈p〉 · s, (5.1)

where 〈p〉 is the mean pressure and s is the net mean flow direction, i.e. in the θ

direction. The profiles of ∂〈p〉/∂s, normalized by 1/2(ρW 2
b /h), are shown in figure 13

along the crossflow direction on the bottom and top walls. The pressure gradient
on the bottom wall attains a constant negative value away from the wire owing to
the imposed FPG (negative ∂〈p〉/∂s) in all cases. Near the wire in the crossflow
cases, three regions of large FPG are observed, which indicate the primary and two
secondary separated-flow regions. The magnitude of FPG increases as the amount of
crossflow is increased. Towards the reattachment point, the pressure gradient shows
a linear increase, before it attains a constant negative value. Favourable pressure
gradients are also observed on the top wall in all cases except Case D. Moreover,
one region of large FPG is observed above the wire; note that the region is split
in the middle by the periodic boundary used in the simulation. A linear increase of
the pressure gradient is observed in the region above the primary separation bubble
upstream of the reattachment point, followed by a decrease of the pressure gradient
and a region with constant pressure gradient towards the centre of the channel. In
Case D, a region of APG is observed for x/h approximately between 2 and 5. The
profiles on the bottom and top wall indicate that equilibrium of the flow is reached
towards the centre of the channel where the flow remains attached. This fast recovery
process can be attributed to the presence of the strong axial flow.

The profiles of ∂〈p〉/∂s, normalized by 1/2(ρW 2
b /h), on the wire surface are shown

in figure 14. In Case A, the pressure gradient remains uniform on the wire surface.
In the crossflow cases, on the windward surface of the wire, FPG is observed as the
flow accelerates to overcome the area reduction caused by the wire. The magnitude of
FPG increases as the amount of crossflow is increased. The pressure gradient reverses
just before reaching the top-most point of the wire. Obviously, the flow can not
sustain that APG for long and it separates quickly generating a shear layer, which
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can be seen qualitatively by the sudden drop of the pressure gradient at β ≈ 85◦.
After separation, the pressure gradient takes small negative value on the leeward side
of the wire. These results complement and are necessary in order to rationalize the
observed behaviour of the inner-scaled velocity profiles discussed previously.

5.2. Turbulence intensities

Contours of turbulence kinetic energy, k = (1/2)〈u′
iu

′
i〉, normalized by W 2

b , in the x–y

plane are shown in figure 15. In Case A, the peak of k is about 0.017 and it is
observed close to the walls and wire surface and it reaches a minimum value towards
the centre of the channel. The zone around the contact point of the wire with the
walls of the channel does not experience the same level of turbulence kinetic energy
as that observed in the less-confined regions of the flow. The proximity of the walls
blocks the development of velocity fluctuations in that region. In Case B, the peak
of k is about 0.019 and it is observed close to the walls, wire surface and shear layer.
In the primary recirculation zone, k attains a value of about 0.005. After the flow
reattaches, the contours are similar to those of Case A, with lower values observed
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towards the middle of the channel. In Case C, peak k is about 0.021 and it is observed
close to the wall within the recirculation bubble. The turbulence kinetic energy attains
higher values near the region of separation and recirculation in comparison to other
parts of the channel but there are two lower peaks of k, one at the shear layer and
another close to the top wall of the channel in the neighbourhood of the wire. For
Case D, the peak of k, approximately 0.052, is located in the shear layer. The regions
of large k have grown in extent and magnitude compared to Case C. Lower values of
k are observed in other parts of the channel. Part of the increase in kinetic energy is
directly associated with the presence of the additional crossflow. This additional flow
increases the overall Reynolds number, (3.17), and one would expect higher levels of
kinetic energy as a direct consequence of the increase in the flowrate. Nevertheless, the
interaction of crossflow with the axial flow result in additional turbulence production
at specific locations.

One difficulty that must be considered when analysing the overall behaviour of
statistical profiles as a function of y across the channel height is the impossibility
of defining a unique flow direction valid over the extent of the channel. According
to our previous parameterization, § 3.2, it is possible to define at least three different
directions at any particular value of x. These are the two directions determined from
the local mean wall shear stress, similar to (3.11), as well as a direction defined by
the local average flowrate through this plane. The latter being analogous to the angle
defined from Qx and Qz, appropriately rescaled. One immediately realizes that none
of these angles provides a clear and unique direction at a particular station because
the flow is not homogeneous in the x direction. Therefore, we chose to discuss the
turbulence intensities in the frame of the simulation and avoid rotating the velocity
components in any particular direction to prevent introducing an additional degree
of arbitrariness.

The profiles of turbulence intensities, i.e. the root mean square (r.m.s.) velocity
fluctuation, normalized by friction velocity at different crossflow locations, xt , xc,
xb and xr , are shown in figures 16–19, respectively. The quantities urms, vrms and
wrms denote crossflow, vertical and streamwise intensity, respectively. In Case A, the
turbulence intensities attain higher values in the near-wall regions and lower values
towards the centre of the channel. In the cases with crossflow, except in Case D, the
largest change is observed in the values of wrms, which attains a maximum value close
to the top wall of the channel. The location of this maximum is about y/h =1.96 in
Case B and C. The relative values of the intensities change as the crossflow increases
owing to the change in the mean direction of the flow. The value of wrms in Case
A is slightly lower in the near-wall region and slightly higher in the outer part of
the boundary layer, in comparison to those of a flat plate boundary layer. This is
consistent with the study of Snarski & Lueptow (1995) of a turbulent boundary
layer on a cylindrical surface, where the difference in the turbulence intensity in the
streamwise direction from a turbulent boundary layer on a flat surface was attributed
to low surface area near the wall and less constraints in the outer region of the flow.
Due to low surface area near the wire, less vorticity per unit volume is introduced in
the boundary layer compared with a flat plate turbulent boundary layer. In the outer
part of boundary layer the wire surface imposes fewer constraints on the flow and
motion of the eddies, resulting in larger wrms values compared to a flat plate turbulent
boundary layer.

The profiles at xc for Case A are approximately symmetric about the centre of
the channel (the small asymmetry is due to limited statistical sampling) and they
are similar to those of a turbulent channel (Kim, Moin & Moser 1987). This is due
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to the lack of separation of the flow in Case A and the effect of the wire is not
significant towards the central region of the channel. In Case B, the profiles start
to lose symmetry, indicating recovery of the flow in this region is not yet complete.
The urms values are larger than the vrms values in most of the channel except near
the centre. In cases C and D, where the amount of crossflow is higher, the profiles
loose their symmetry completely and the minimum value does not occur at the centre
of the channel. The location of minimum turbulence intensity in Case C is observed
towards the lower half of the channel. In this case, away from the wall, the urms and
vrms profiles do not vary significantly. In Case D, the value of urms increases away
from the wire in the vertical direction and it attains higher values than those of wrms.
This increase can be attributed to a high turbulence kinetic energy in the outer part
of the boundary layer (Johnston 1970) or a strong APG.

At location xb, all profiles develop a peak in all r.m.s. of velocity components
towards the centre of the channel. This is a consequence of the presence of the shear
layer. The value of urms and vrms increase in the near-wall and recirculation regions
as the amount of crossflow increases. In the shear-layer region, both urms and vrms

become comparable to wrms implying a higher level of turbulence intensities. This is
similar to the high turbulence intensity observed in shear layers in earlier studies of
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separating/reattaching flows (Eaton & Johnston 1981; Shih & Ho 1994; Liua et al.
2008). Kaltenbach & Janke (2000) have attributed such an increase of turbulence
intensity in the shear layer of a swept flow, to the extensional strain of vortical
structures along their axis, present in the shear layer. In swept flows, the vortices,
which are not aligned with the flow direction, experience this strain owing to presence
of large velocity gradient components in the shear layer.

Finally, the profiles at xr , where the mean flow reattaches to the wall, are similar to
those of a turbulent channel for cases B and C, with peak values near the wall and
the presence of a local minimum towards the centre. However, in Case D the profile
shows substantial differences. The maximum value of urms increases as the amount of
crossflow increases. The value of vrms is highest near the walls and shows less variation
towards the centre of the channel, increasing with increasing crossflow. This region
shows that decay of turbulence intensity starts to occur near the reattachment region.
This decay is more apparent in cases B and C, compared to Case D.

6. Resolution requirements for a corresponding large-eddy simulation
Almost without exception, flows in industrial or technological applications at high

Reynolds numbers cannot be studied using DNS. The high Reynolds numbers and
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Figure 18. Root mean square velocity fluctuations normalized by friction velocity at location
xb . The different intensities are urms (
), vrms (�) and wrms (�). Subfigures denote cases B (a),
C (b) and D (c).

complex geometries of these flows make the computational cost prohibitive. Therefore,
one is forced to consider some degree of turbulence modelling, e.g. LES. One difficulty
that is often encountered in this approach is that it is rarely possible to assess a priori
the accuracy of the simulation due to subgrid and numerical modelling uncertainties
(Pope 2004; Geurts 2006; Meyers, Sagaut & Geurts 2006). In this respect, the present
DNS datasets can provide a potential candidate for a LES validation. Unfortunately,
for complex flows, it is often unknown how to select the cutoff scale of the LES such
that an accurate representation of the flow is achieved, i.e. without carrying out a
costly refinement study (Meyers, Geurts & Baelmans 2003). Here, we discuss an a
posteriori estimate of the required cutoff scale of a LES corresponding to each of
the present DNS cases, such that all features of interest are appropriately captured.
In order to achieve this, we utilize the often implied (heuristic) criteria that states
that a good LES is one that resolves most of the energy containing scales (Pope
2004). In our particular application, the ultimate goal would be to estimate the actual
resolution requirements of a full LES of the complete wire-wrapped assembly of a
reactor core; involving hundred of pins with helically wrapped wires.
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Figure 19. Root mean square velocity fluctuations normalized by friction velocity at location
xr . The different intensities are urms (
), vrms (�) and wrms (�). Subfigures denote cases B (a),
C (b) and D (c).

Following Pope (2000), let us consider the integral length scale L expressed in terms
of turbulence kinetic energy k and turbulence dissipation ε given by

L =
k3/2

ε
. (6.1)

The turbulence Reynolds number ReL based on the integral length scale is given by

ReL =
k2

εν
. (6.2)

The profiles of ReL at four different crossflow locations for cases A through D are
shown in figure 20. The value of ReL is larger in Case D compared to other cases at
all the crossflow locations which is consistent with a larger value of Reb in Case D.
Different criteria can be utilized to determine the fraction of turbulence kinetic energy
that should be resolved in a LES such that unavoidable modelling uncertainties do not
pollute the overall simulation accuracy; one such criteria is discussed in Pope (2004).
According to that view, a ‘good’ LES should resolve at least 80 % of the turbulence
kinetic energy at any location of the domain. This requires a mesh resolution fine
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Figure 20. Profiles of integral Reynolds number, ReL for cases A through D at four different
crossflow locations: xt (a), xc (b), xb (c) and xr (d ). Cases A, B, C and D are denoted by thin
solid, thin dashed, thin dashed-dotted and thick dashed curves, respectively.

enough to capture the energy associated with most of the large-scale eddies. In the
case of a separating/reattaching flow, it is important to know whether the resolution
required near the reattachment and recirculation zones is higher or lower than that
required in other regions of the flow, where an understanding of the resolution needs
is well established.

In order to answer this question for the present flows, some assumptions must be
invoked. In particular, an estimate of the energy spectra is required at all locations of
the flow. Given the limited statistical sample available from the DNS, we propose to
use a model spectrum to derive the resolution estimates of interest here. The model
spectrum of Pope (2000) can be used to obtain a non-dimensional cutoff wavenumber
κc such that the range from κ = 0 to κc contains 80 % of the total turbulence kinetic
energy. The turbulence kinetic energy is related to the energy spectra (assuming
isotropy and homogeneity but not necessarily an inertial subrange scaling) by

k =

∫ ∞

0

E(κ) dκ, (6.3)
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where E(κ) denotes the energy spectrum. The cutoff wavenumber κc can be defined
implicitly through the 80 % low-pass spectral filter given by

0.8 k =

∫ κc

0

E(κ) dκ. (6.4)

The model spectrum proposed by Pope (2000) is

E(κ) = Cε2/3κ−5/3fL(κL)fη(κη), (6.5)

where fL and fη are non-dimensional functions given by

fL(κL) =

(
κL

[(κL)2 + cL]1/2

)5/3+p0

(6.6)

and

fη(κη) = exp{−β{[(κη)4 + c4
η]

1/4 − cη}}, (6.7)

respectively. The values of the constants we use are p0 = 2, β = 5.2 and C = 1.5. After
some manipulations, one can reduce the relationships to the group ζ = κcL; a function
of ReL only. The constants cL and cη, at a fixed ReL, can be found by solving (6.3)
together with the turbulence dissipation relationship,

ε = 2ν

∫ ∞

0

κ2E(κ) dκ. (6.8)

The group ζ = κcL can be used to define the physical cutoff scale, according to


c

h
=

π

ζ

L

h
. (6.9)

Note that the present estimates are not tied to a particular discretization or subgrid-
scale model (e.g. Meyers, Geurts & Sagaut 2007). They reflect the lowest order
criteria for appropriate LES of the flows discussed in this paper if all uncertainties
are surrogate to the subgrid modelling error. The profiles of 
c/h at four different
crossflow locations are shown in figure 21 for cases A through D. In particular, it
appears that one can resolve the flow in the LES sense using at least 
c/h ∼ 0.05 at
all locations (this corresponds to a mesh of 250 × 40 × 500 = 5 106 grid points with an
overall savings of a factor of 20 with respect to the present DNS). Figure 22 shows
the same results but using inner scaled variables. In this case the estimate predicts
that an inner-scaled cutoff scale of ∼20 should be sufficient to resolve the flow close
to the wall in a LES.

7. Shear stress analysis
The statistics of the shear stress on the bottom wall and the wire surface are

investigated at this point. The magnitude of the wall shear stress is given by

τs =

√
τ 2
ln + τ 2

mn, (7.1)

where τln and τmn are the wall-shear stresses, as defined in (3.9) and (3.10). In the
present discussion, a completely local investigation is carried out where the wall shear
stresses are not projected along the average shear-stress direction, defined by the angle
θ in (3.11). This was done to focus on the local character of the flow, as opposed to
investigating quantities that combine elements determined from averages and which



DNS of turbulent swept flow over a wire in a channel 193

Δ
c/

h
Δ

c/
h

0.06

0.09

0.12

0.15

0.18

0.21

0.05

0.10

0.15

0.20

0.25

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20

0.25

0.30

1.0 1.2 1.4 1.6 1.8 2.0 0.50 1.0 1.5 2.0

y
0.5 1.0 1.5 2.0

y
0.50 01.0 1.5 2.0

(a) (b)

(c) (d)

Figure 21. Profiles of 
c/h for cases A through D at four different crossflow locations: xt

(a), xc (b), xb (c) and xr (d ). Cases A, B, C and D are denoted by thin solid, thin dashed, thin
dashed-dotted and thick dashed curves, respectively.

could potentially skew the interpretation of the small-scale physical process involved.
Irrespective of this choice, (7.1) is invariant with respect to the use of a local or an
average θ .

Iso-contours of total shear stress τs , normalized by τc, are shown in figures 23 and
24. In Case A, figure 23 shows intermittent streaks of high shear stress between low
shear stress regions. The streaks are mostly aligned along the mean flow direction,
as expected. The region close to the wire, which extends roughly up to 2 wire
diameters, contains weaker structures but the qualitative pattern of the shear stress
is analogous to that observed in the centre of the channel. However, the distribution
looks different in Case C, where figure 24 shows distinct patterns or regions with
varying shear-stress behaviour. In the region covering the reattachment zone to the
centre of the channel, very high shear-stress values are observed. Here, intermittent
high shear-stress streaks embedded in low shear-stress regions are observed. The
streaks are aligned at an angle with the axial direction owing to the presence of
the crossflow. In the recirculation region, the shear stress distribution shows less
well-defined intermittent patterns. The reduced intensity of the streaky structures is
similar to that observed in previous studies Spalart & Coleman 1997; Kaltenbach
2003; Marquillie, Laval & Dolganov 2008). A sharp change in the magnitude is
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Figure 22. Profiles of 
cuτ /ν for cases A through D at four different crossflow locations: xt

(a), xc (b), xb (c) and xr (d ). Cases A, B, C and D are denoted by thin solid, thin dashed, thin
dashed-dotted and thick dashed curves, respectively.

also observed around the reattachment point. The intermittent or streaky behaviour
observed towards the centre of the channel is similar to the streaky pattern of velocity
near the wall observed in channel flow and turbulent boundary layers (Simpson 1996;
Kaltenbach 2003). The wall shear stress streaks in both cases seem to align with the
mean flow direction. This alignment indicates convection of coherent structures in
the net mean flow direction. The presence of these streaks indicates a high level of
shear rate, which in turn is responsible for production of turbulence kinetic energy
near the wall (Kim et al. 1987; Kaltenbach 2003). Honkan & Andreopoulos (1997)
have also observed similar intermittent behaviour in several invariants associated
with strain-rate and vorticity and have attributed this to a burst of large amplitude
events followed by less violent periods. Near the reattachment, this streaky behaviour
is reduced owing to the impinging of vortical structures on the wall but the shear
stress remains high. The effect of impinging structures is not felt downstream of the
reattachment zone as axial flow dominates in that region.

An overlay plot of vortical structures and wall shear stress is shown in figure 25.
The instantaneous wall shear stress distribution appears to be well correlated with the
shape and orientation of vortical structures. As discussed earlier, in the regions where
the flow is attached, the wall shear stress shows intermittent behaviour with high shear
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Figure 23. Iso-contours of friction stress τs , normalized by τc , on the bottom wall including
the wire surface for Case A. Large-scale view of the wall shear stress (a), and a zoom in of
the near-wire region (b).
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Figure 24. Iso-contours of friction stress τs , normalized by τc , on the bottom wall including
the wire surface for Case C. Large-scale view of the wall shear stress (a) and shows a zoom in
of the near-wire region (b).

stress regions embedded within low shear stress regions. However, the region under
the recirculation bubble is characterized by a low and almost constant wall shear
stress. Note that on the wire top, where the flow is partially attached, quasi-streamwise
structures like v1 are observed. In the regions where the flow detaches and forms a
shear layer, structures like v2 are observed with no specific orientation. However close
to the wall in the recirculation zone, some slender streamwise structures similar to v3

are observed. After the flow reattaches, quasi-streamwise slender vortices like v4 are
again evident.
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b λ2/h2 = −4.06. Representative vortical structures are indicated by v1,
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7.1. Mean and root mean square wall shear stress

The variation of τw , defined in (3.20) and normalized by τc, as a function of x along
the bottom wall is shown in figure 26 for all the cases. In Case A, τw remains fairly
constant approximately two diameters away from the wire and decreases gradually
as one approaches the wire. As discussed in § 5.1, a reduction in the axial velocity
gradient is observed close to the wire which in turn leads to a reduction in τw in
this region. In the cases with crossflow, the maximum value of τw increases with
increasing crossflow. The location of maximum wall shear stress is observed to occur
near reattachment. Away from the wire, where the crossflow is attached, τw remains
fairly constant. This constant value increases with the amount of crossflow since the
resultant mean flowrate increases from cases B to D. In the leeward side of the wire,
it shows a gradual increase with increasing x, reaching a maximum near the mean
crossflow reattachment point. This gradual increase is observed in all the cases with
crossflow, although it is very small in Case B. The lower values of τw observed inside
the primary and secondary recirculation bubble in the leeward side and secondary
recirculation bubble in the windward side, compare qualitatively with observations of
Dianat & Castro (1991) and Mittal et al. (2003). This behaviour is consistent with the
earlier studies of separating/reattaching flows mentioned in § 1, where wall shear stress
variation in the streamwise direction has been used to determine the reattachment
length. However, in the present case, the criteria of zero wall shear stress at the
reattachment location cannot be used to determine a reattachment length (Johnston
1970). The zero crossing of the wall shear stress is a particular condition encountered
in unswept flows.
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The variation of the mean wall shear stress on the wire surface is shown in figure 27
in polar coordinates. The variation for Case A is nearly symmetric, as expected, except
close to the contact point of the wire. In the cases with crossflow, symmetry is not
observed as crossflow is accelerating in the windward side and decelerating in leeward
side of the wire. In particular, the value of τw is higher in the windward side owing
to the flow acceleration and increased wall friction. Overall, the wall shear stress
increases with increasing crossflow. Similar profiles are observed in channel flow with
a constriction (Mittal et al. 2003).
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dashed-dotted and thick dashed curves, respectively.

The r.m.s. of wall shear stress τw,rms , normalized by τc, is shown in figure 28 as
a function of x along the bottom wall for all cases. The behaviour of the mean
and r.m.s. of τw are very similar. Larger r.m.s. values, about 50 % of the mean, are
observed in Case D near the reattachment. This is similar to the observations near
reattachment in the earlier studies of separating/reattaching flow (Dianat & Castro
1991; Kaltenbach & Janke 2000; Mittal et al. 2003; Li & Naguib 2005). This rise
is attributed to impingement of large-scale vortical structures in the reattachment
region. After reattachment of the flow, a gradual decay and levelling off is observed.

The variation of the r.m.s. of wall shear stress normalized by τc and τw , respectively,
on the wire surface is shown in figure 29 in polar coordinates. Nearly symmetric
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behaviour is observed for Case A, although some variation is observed which is
attributed to slightly lower convergence of these second-order statistics. In the cases
with crossflow, the symmetric behaviour is lost. When scaled by τc, the r.m.s. of
wall shear stress attains larger values on the windward side of the wire, which is
apparent in cases C and D. This is similar to the behaviour observed in unswept
flows, where the higher levels of wall shear stress fluctuations are associated closely
with acceleration of the mean flow (Nepomuceno & Lueptow 1997). Note that the
r.m.s. of wall shear stress shown in figure 29(a) is scaled by τc, which is based on
the bulk velocity in the axial direction, and thus it does not take into account the
crossflow. An alternative scaling is based on the local value of the average wall shear
stress. When this scaling is used, as shown in figure 29(b), τw,rms/τw decreases with
increasing crossflow, which can be attributed to the dampening effect of FPG.

7.2. Wall shear stress alignment

The net mean flow direction is based on a wall shear stress coordinate system,
discussed by Simpson (1996). The orientation of the wall shear stress with respect to
the mean flow is important from a modelling point of view. Appropriate modelling
of the near-wall region, including anisotropic effects, is believed to be very important
for improved simulations based on RANS as well as in LES. Linear eddy-viscosity
models assume that the strain rate tensor is aligned with the turbulent shear stresses,
but previous studies show that it is the wall shear stresses that are aligned with the
turbulent shear stresses close to the wall (Johnston 1970; Bradshaw 1987; Webster
et al. 1996). In this section, the behaviour of θ , defined by (3.11), is investigated. This
definition implies that θ is a mean angle computed from quantities that were averaged
in the homogeneous z direction. The variation of this angle as a function of x on the
bottom wall is shown in figure 30 for all the cases. The angle is very small in Case A
because there is no crossflow; the shear stress vector is mostly aligned along the axial
direction. For the cases with crossflow, negative values of angle θ are observed in the
leeward side of the wire. This is a consequence of the mean crossflow reversal within
the recirculation zone. The absolute value of θ increases with increasing crossflow.
After flow reattachment, the angle becomes positive and increases with increasing x

to reach a constant value until the secondary recirculation bubble in the windward
side of the wire is reached. Within this last region, the angle changes sign for the same
reason explained before for the primary recirculation zone. The variation observed in
θ is consistent with the mean wall shear stress variation shown in figure 26. Moreover,
θ could be used to define the reattachment length, as the point where θ becomes zero,
and it could be viewed as a generalization of the zero wall-shear stress condition used
in unswept flows. Another feature of θ is that it is indicative of the degree of flow
recovery after reattachment.

The average wall shear stress alignment θ can be used as a criterion to quantify the
degree and rate at which the flow attains equilibrium after reattachment. Figure 30
shows, for cases B through D, the mean reattachment location xr as well as the
approximate location where the flow appears to reach equilibrium xe. Figure 30 shows
that after reattachment θ increases in the region xr < x <xe, reaching a constant level
some distance ahead of the secondary recirculation bubble on the windward side of
the wire. The length of this recovery region increases with increasing crossflow velocity.
For cases C and D, equilibrium turbulent flow is not recovered before the influence of
the wire is beginning to be felt again. Especially for Case D, the simulation domain
length in the x direction is not sufficient for the flow to recover completely. The length
of the recovery region varies since the Reynolds number in the crossflow direction
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Figure 30. Variation of angle θ (in radians) along crossflow direction for all the cases: Case
A (a), Case B (b), Case C (c) and Case D (d ). The equilibrium level of angle θ is denoted by
the dashed-dotted line.

is increasing from cases B to D. Therefore, a combined effect of sweep angle and
Re affects the recovery length. This observation is also consistent with the pressure
gradient behaviour in the mean flow direction, as shown in figure 13.

The variation of θ on the wire surface is shown in figure 31. In these plots, the
corner regions of the wire are excluded because appropriate convergence of the mean
shear stresses could not be realized; θ exhibited too large fluctuations in that region.
In all cases with crossflow, an increase of θ with increasing crossflow velocity is
observed on the windward side of the wire, with a maximum value in the region
(90◦ < β < 180◦). Moreover, little variation is observed in the leeward side of the
wire. Here, the wall shear stress, 〈τmn〉, is quite small. The variation of θ on the wire
surface is consistent with the mean wall shear stress variation shown in figure 27.

8. Conclusions
Results of DNS of turbulent swept flow over a wire resting on a wall of a channel are

presented. Axial and crossflow Reynolds numbers are 5400 and 0–1709, respectively.
Spectral element method/Fourier decomposition is used to solve the governing
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equations. The present study is concerned with crossflow velocities up to 32 % of
the axial velocity. This regime has received little attention in the past. Increasing
crossflow magnitudes and Reynolds numbers for a fixed axial flowrate increases
the size of the recirculation region on the leeward side of the wire. Instantaneous
vortical flow structures show clear contrast in the separated and attached regions
in terms of their orientation with respect to the mean flow direction. Mean velocity
profiles, Reynolds stresses and turbulence kinetic energy are investigated and their
behaviour in the recirculation bubbles is discussed. As in many other wall-bounded
turbulent flows with detached flow regions, the inner-scaled mean velocity profile
in the shear-stress-based coordinate frame shows large deviations from ‘Law of the
Wall’ behaviour. Some of these deviations can clearly be associated with variations
in the pressure gradient, showing flow recovery to a near equilibrium state after
reattachment.

The instantaneous total wall shear stress shows intermittent streaks of high value
embedded in low shear stress regions in the case without crossflow. These streaks
are aligned in the net mean flow direction. In the cases with crossflow, away from
the reattachment zone, the streaky nature of the shear stress is observed with the
streaks aligning along the net mean flow direction. Near the reattachment zone and
under the primary recirculation bubble the intermittent streaky character is not as
marked owing to the impingement of vortical structures from the shear layer. The
instantaneous wall shear distribution appears to be well correlated with the shape
and orientation of vortical structures, with larger values close to the reattachment
zone. The angle between components of wall shear stress vector, θ , is negative in the
leeward side of the wire. It increases in the crossflow direction and reaches a peak and
remains constant further downstream until the windward side of the wire is reached.
The statistics of the angle θ indicates that the attached flow approaches equilibrium
but only at a rather low pace.

Finally, the DNS is used to evaluate the extent of the resolution requirements in a
hypothetical LES. This is estimated according to the 80 % kinetic energy resolution
criteria and it is shown that LES of the present flows should be possible using at
most a factor of 20 fewer grid points (using a subgrid scale model). In particular, this
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Figure 32. Profile of mean streamwise velocity normalized by wall-shear velocity, compared
with the ‘Law of the Wall’ and DNS data of Kim et al. (1987). Solid line is simulation data,
dashed line is u+ = y+ and dashed-dotted line is u+ = 2.5 ln y+ +5.5. Symbol � denotes DNS
data of Kim et al. (1987).

can be used to obtain an estimate of the required resolution of a simulation of the
full wire-wrapped assembly in a nuclear reactor.
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Appendix A. Validation
The code was validated against the reference DNS of Kim et al. (1987). This

corresponds to the simulation of a turbulent channel flow at Reynolds number of
3300, based on the centreline velocity, and friction Reynolds number of 180. The
simulation is performed using the same numerical procedure detailed in § 3.1, with
a total of approximately 4 million grid points collocated as in Kim et al. (1987).
The mean velocity profile obtained from the validation simulation, the reference
DNS, is compared with the reference ‘Law of the Wall’ is shown in figure 32.
The turbulence intensity profiles compared with results from the reference DNS are
shown in figure 33. Excellent and good agreement is observed in the mean velocity
and turbulence intensity profiles, respectively.

Appendix B. Turbulence kinetic energy budgets
The budget equation for the turbulence kinetic energy k is given by
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Figure 33. Profile of turbulence intensities compared with DNS results of Kim et al. (1987).
Symbols �, 
 and � denote DNS data of Kim et al. (1987) whereas lines denotes validation
simulation data for urms, vrms and wrms, respectively. Solid line is urms, dashed line is vrms and
dashed-dotted line is wrms.

where, P , T , ε, π, D and C denotes turbulence production, transport, dissipation,
pressure transport, viscous diffusion and convection, respectively. The profiles of the
terms P , T , ε, π, D and C throughout the span of the channel are obtained at location
xc for Case A and at location xb for the remaining cases. These profiles are shown
in figure 34. The location xb is important as it covers the shear-layer region. In Case
A, the peaks of all the budget terms are located near the top and bottom walls.
Towards the centre of the channel, all the budget terms become insignificant because
in this region the turbulence kinetic energy is small. In the cases with crossflow,
peaks are also observed near both walls and towards the centre of the channel, where
the shear layer is located. The value of the local peaks of these quantities increases
with increasing crossflow. This increase is clearly observed in cases C and D in the
shear-layer region. As the amount of crossflow increases, the transport terms, T and
π along with dissipation, balances the production of turbulence kinetic energy in the
recirculating region. The production term P , becomes dominant in the region of the
separated shear layer and the magnitude increases with the amount of crossflow. This
is consistent with a rise in the level of turbulence intensity in this region in all the three
directions, as discussed earlier. In the shear-layer region, an increase is observed in
the magnitude of all the budget terms as the amount of crossflow increases signifying
transport of turbulent energy across the shear layer. Above the shear-layer zone,
it is observed that the turbulent transport in conjunction with the convection term
becomes a source of turbulence kinetic energy. Near the wall, dissipation is balanced
by viscous diffusion (Na & Moin 1998).

Appendix C. Statistics of the recirculation bubble
The type of reattachment observed in the present simulations is of ordinary type

according to Johnston (1970). In this case, the wall shear stress is not zero at the
reattachment point. The observed reattachment length in the simulations increases
with increasing Re; similar to findings over backward-facing steps (Armaly et al.
1983; Adams & Johnston 1988; Li & Naguib 2005). The shear layer that separates
the recirculation bubble from the main channel is characterized by the presence
of disorganized vortical structures (Chun & Sung 2003; Song & Eaton 2004). The
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Figure 34. Profiles of turbulence kinetic energy budget terms at location xc for Case A (a)
and at location xb for cases B (b), C (c) and D (d ). P , T , π, D, C and ε are denoted by
thick solid line, dashed-dotted line, dotted line, dashed line, solid line and thick dashed line,
respectively.

intensity of the turbulence kinetic energy is large, as discussed earlier. The locus of
the peak of k in the shear layer along with the mean dividing streamline and iso-
contours of k normalized by W 2

b , for Case C are shown in figure 35. The locus of peak
turbulence kinetic energy is usually used as an approximation for the centre of the
shear layer (Dianat & Castro 1991). At the separation point, this curve deviates from
the mean dividing streamline but it remains close to the mean dividing streamline
over most of the primary recirculation zone. Further deviation of the peak turbulence
kinetic energy locus and the mean dividing streamline is observed before reattachment.
This would suggest that the outer regions near reattachment still contains high values
of turbulent intensity and there is persistence of large scale vortical structures; similar
to that observed in backward-facing step flow (Eaton & Johnston 1981). Some studies
of the behaviour of this shear layer have focused on the fluid entrainment (Li &
Naguib 2005; Liu et al. 2006, 2007) and its association with the reattachment length.

An important difference between the present flows and previous studies is that
a large fraction of the primary bubble is in a fully turbulent state; caused by the
large axial flow. Iso-contours of turbulent production P , normalized by W 3

b /h, are
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Figure 35. Iso-contours of turbulence kinetic energy normalized by W 2
b , overlayed with mean

streamlines (solid curves with arrows) and locus of maximum kinetic energy (dotted curve) in
the shear layer for Case C.
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Figure 36. Iso-contours of production of turbulence kinetic energy normalized by W 3
b /h

for Case C.

shown in figure 36 for Case C. It is observed that production is high close to
the separation point and beginning of the shear layer as well as close to the wall
within the recirculation zone. The level of near-wall turbulence production in the
recirculation and fully attached flow regions is similar. This indicates that the flow
within the recirculation bubble has features of a turbulent flow compared to other
separated/reattached flows where the flow within the recirculation bubble has more
laminar features (Dianat & Castro 1991). The magnitude of the turbulence kinetic
energy and production decreased in the shear layer away from separation. This
implies a rapid decay of the vortical structures before impingement on the wall.
The turbulence kinetic energy and production have much smaller values under the
secondary smaller recirculation bubble close to the wire. Figure 15 shows that the
turbulence kinetic energy is large just before the secondary separation. This flow
resembles, to some extent, separation induced in a flat turbulent boundary layer by
an imposed adverse pressure gradient. A decrease in FPG can be seen in figure 13(a)
at approximately x = 1.5, which is close to the location of the flow separation observed
in figures 35 and 36.

Finally, the turbulence energy spectra for Case C at four locations are shown in
figure 37. A reference line corresponding to −5/3 power-law is also shown in the plots
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Location x/h y/h y+

Shear layer 2.17 1.04 324
Centre of bubble 2.01 0.58 181
Near reattachment 3.61 0.17 53
Centre of channel 6.31 1.00 312

Table 4. Coordinates of the locations where turbulence energy spectra is obtained.
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Figure 37. Energy spectra for Case C at four different crossflow locations, shear layer (a),
centre of recirculating bubble (b), near reattachment location (c) and centre of channel (d ).

to compare with inertial subrange Kolmogorov scaling. Spectra are shown for points
located in the centre of the shear layer, in the centre of the bubble, near reattachment
location inside the bubble and at the centre of the channel. The x, y and y+ coordinates
of these locations are provided in table 4. The inner coordinate y+ is measured from
the bottom wall. It is observed that in the intermediate wavenumber range, the energy
decay may approximate the −5/3 power-law, although the Reynolds number is not
sufficiently large for an inertial subrange to be clearly defined. Nevertheless, the level
of turbulence kinetic energy and the shape of the spectra clearly indicates that the
flow is fully turbulent within a large fraction of the primary recirculation bubble.
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